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SUMMARY

The lattice Boltzmann method (LBM) for a binary miscible �uid mixture is applied to problems of
transport phenomena in a three-dimensional porous structure. Boundary conditions for the particle distri-
bution function of a di�using component are described in detail. Flow characteristics and concentration
pro�les of di�using species at a pore scale in the structure are obtained at various Reynolds numbers.
At high Reynolds numbers, the concentration pro�les are highly a�ected by the �ow convection and
become completely di�erent from those at low Reynolds numbers. The Sherwood numbers are calcu-
lated and compared in good agreement with available experimental data. The results indicate that the
present method is useful for the investigation of transport phenomena in porous structures. Copyright
? 2003 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Transport phenomena in porous media are important subjects of many science and engineering
�elds. The problems of �ow and heat=mass transfer in porous media are found in hydraulics,
biomechanics, soil mechanics, geothermal operations, packed-bed chemical reactors, drying
processes, and so on. In the past studies, volume-averaged approaches are usually used to
obtain macroscopic properties such as pressure drops, e�ective thermal conductivities and
e�ective mass di�usivities in porous media. For �uid �ows through porous media, for example,
Ergun [1] proposed the empirical equation based on experimental data to estimate pressure
drops through packed columns. As for heat transfer in porous media, on the other hand, Vafai
and Tien [2] utilized the local volume-averaging technique and investigated the boundary and
inertial e�ects upon �ow and heat transfer in porous media. Buonanno and Carotenuto [3]
proposed a method to calculate the e�ective thermal conductivity of a two-phase isotropic
porous medium by means of a volume averaging technique.
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However, for complex porous structures with spatially non-uniform porosity, it is essen-
tial to investigate microscopic behaviours occurring at a pore scale in the porous structure.
Particularly, as for heat=mass transfer in porous media at high Reynolds numbers, the volume-
averaged approaches often give incorrect estimates of macroscopic properties due to the ap-
pearance of unsteady vortices. In addition, according to References [4–7], one should take
account of the e�ect of dispersion, which is a convection–di�usion phenomenon peculiar to
�uid �ows through porous media at high P�eclet numbers. Thus, it is needed to investigate the
relation between heat=mass transfer and �uid �ow characteristics from the microscopic point
of view.
In recent years, the lattice Boltzmann method (LBM) [8–11] has been used for many

kinds of simulations of incompressible viscous �ows. The main advantages of the LBM over
conventional Navier–Stokes codes are the simplicity of the algorithm and the �exibility for
complex boundaries [12, 13]. Hence it is particularly successful in �uid applications involving
dynamic interface and complex boundaries such as porous media. As for �uid �ows through
porous media, for example, Cancelliere et al. [14] studied the permeability as a function of
solid fraction in a system of randomly positioned spheres by using the LBM. Inamuro et
al. [15, 16] carried out LB simulations of �uid �ows in a three-dimensional porous structure
relatively at high Reynolds numbers, and investigated unsteady �ow characteristics at a pore
scale in the structure. Zeiser et al. [17] employed the LBM and examined the pressure drops
in �xed-bed reactors, taking account of all e�ects of �ow characteristics caused by the radial
and circumferential inhomogeneities of the packings.
On the other hand, the LBM has also been applied to problems of viscous �ows with heat

and mass transfer [18–22]. Recently, Inamuro et al. [23] have proposed an LBM for a binary
miscible �uid mixture with a simpler equilibrium distribution function for the concentration
than that of References [21, 22], and have demonstrated the validity and the accuracy of the
method theoretically and numerically. This LBM can also be applied to thermal �uid systems
by utilizing the formal analogy between the concentration of a di�using component and the
temperature of the �uid. Therefore, it is considered that the proposed LBM is useful and
e�cient for the microscopic investigation of transport phenomena in porous structures.
In this paper, the above-mentioned LBM for a binary miscible �uid mixture is applied to

the problems of transport phenomena in a three-dimensional porous structure in order to inves-
tigate the characteristics of heat=mass transfer at a pore scale in the structure. Also, boundary
conditions for the particle distribution function of a di�using component are presented in detail.

2. LATTICE BOLTZMANN METHOD

In the LBM, a modelled gas, which is composed of identical particles whose velocities are
restricted to a �nite set of vectors, is considered and the evolution of the particle population
at each lattice site in physical spaces is computed. The main advantage of the LBM over
other numerical approaches is considered as follows.
In the case of conventional numerical methods such as the �nite di�erence method, the

discretized macroscopic equations are directly solved. Since the macroscopic equations are
nonlinear and the solutions of nonlinear equations are highly related to boundaries, it should
be di�cult to solve the equations especially if the physical system has complex geometries.
Moreover, when the incompressible Navier–Stokes set is computed by using the conventional
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methods, the pressure satis�es a Poisson equation and solving this equation for the pressure
often produces numerical di�culties requiring special treatment such as iteration or relaxation
(e.g. see Reference [24]). In the LBM, on the other hand, one takes advantage of an analogy
with the kinetic theory of gases and solves the kinetic equation which is called the lattice
Boltzmann equation. Due to the simple linear form of the di�erential term of kinetic equation,
the algorithm of the LBM is very simple. Therefore, it is considered that the LBM can be an
e�cient and attractive tool for simulating the �uid �ows including complex phenomena.

2.1. Method of computation

The three-dimensional �fteen-velocity model [11] is used in the following calculations, where
the physical space is divided into cubic lattices. Hereafter, non-dimensional variables, which
are de�ned by a characteristic length L, a characteristic particle speed c, a characteristic time
scale t0 =L=U where U is a characteristic �ow speed, a reference density �0 and a reference
mass concentration ��0 are used as in References [23, 25]. The �fteen-velocity model has the
following velocity vectors:

[c1; c2; c3; c4; c5; c6; c7; c8; c9; c10; c11; c12; c13; c14; c15]

=



0 1 0 0 −1 0 0 1 −1 1 1 −1 1 −1 −1
0 0 1 0 0 −1 0 1 1 −1 1 −1 −1 1 −1
0 0 0 1 0 0 −1 1 1 1 −1 −1 −1 −1 1


 (1)

In the following, we consider a mass transfer problem in a binary miscible �uid mixture under
the condition that the fraction of di�using component, �-species, is negligibly small. However,
it should be noted that the following analysis can be applied to heat transfer problems by
taking advantage of the formal analogy between the mass concentration of the �-species and
the temperature of the �uid. The evolution of the particle distribution functions, fi(x; t) for
the �uid and gi(x; t) for the �-species, with velocity ci at the point x and time t is computed
by the following equations [23]:

fi(x+ ci�x; t +�t)− fi(x; t) =− 1
�f
[fi(x; t)− feqi (x; t)] (2)

gi(x+ ci�x; t +�t)− gi(x; t) =− 1
�g
[gi(x; t)− geqi (x; t)] (3)

for i=1; 2; 3; : : : ; 15, where �x is a spacing of the cubic lattice, �t is a time step, feqi and
geqi are equilibrium distribution functions, and �f and �g are single relaxation times which are
of O(1). Note that �t is chosen so that the particles travel one lattice spacing during the time
step. Suitable equilibrium distribution functions of the �uid mixture are given by [11, 23]

feqi = Ei�
[
1 + 3ci · u+ 92 (ci · u)

2 − 3
2
u · u

]
(4)

geqi = Ei�� (1 + 3ci · u) (5)
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for i=1; 2; 3; : : : ; 15, where E1 = 2=9; E2 =E3 = · · · =E7 = 1=9 and E8 =E9 = · · · =E15 = 1=72.
The density � of the �uid, the �ow velocity u and the mass concentration �� of the �-species
are de�ned in terms of the particle distribution functions as follows:

�=
15∑
i=1
fi (6)

u=
1
�

15∑
i=1
fici (7)

�� =
15∑
i=1
gi (8)

and the pressure p is related to the density � by

p=
1
3
� (9)

2.2. Governing equations for macroscopic variables

Hereafter, the summation convention is used for the subscript � and � (�; �= x; y; z). As shown
in References [23, 25], applying asymptotic theory [26] to Equations (2), (3) and (6)–(9) with
(4) and (5), we �nd that

u′= �u(1) + �2u(2); p′= �2p(2) + �3p(3); �′�=�
(0)
� + ��(1)� ;

with � being a small parameter which is of the same order as �x, satisfy

@u′�
@x�

=0 (10)

St
@u′�
@t
+ u′�

@u′�
@x�

=−@p
′

@x�
+ �

@2u′�
@x2�

(11)

St
@�′�
@t
+ u′�

@�′�
@x�

=D�
@2�′�
@x2�

(12)

where St (=U=c) is the Strouhal number, and the kinematic viscosity � of the �uid and the
mass di�usivity D� of the �-species in the �uid are given by

�=
1
3

(
�f − 1

2

)
�x (13)

D� =
1
3

(
�g − 1

2

)
�x (14)

Equations (10)–(12) correspond to the continuity equation, the Navier–Stokes equations for
the incompressible �uid and the convection–di�usion equation for the concentration of the
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�-species, respectively. Therefore, it is found that using Equations (2)–(9) one can obtain
the �ow velocities, the pressure gradient for incompressible �uid and the mass concentration
of di�using species with relative errors of O(�2). Also, it can be shown that the mass �ux of
�-species, j′�= �j

(1)
� + �2j(2)� , is given by [27]

j′�=�
′
�(u

′
� − u′) (15)

where u′�= �u
(1)
� + �2u(2)� is de�ned as follows:

u′�=
1
�′�

15∑
i=1
gici (16)

In the case of heat transfer problems, the temperature T , the thermal di�usivity � and
heat �ux q of the �uid are given by Equations (8), (14) and (15) with (16), respectively.
Moreover, the thermal conductivity k is given by [27]

k=
1
3
�g�x (17)

2.3. Comparison between LBM and other numerical methods

To compare the accuracy and computing time of the LBM with those of other numerical
methods, we calculate natural convection �ows in a square cavity with insulated top and
bottom walls and with side walls maintained at constant but di�erent temperatures, as shown
in Figure 1. It is assumed that the temperature of the left-hand side wall is higher than that of
the right-hand side wall. The Boussinesq approximation is used for the gravitational term. In
the calculations, the two-dimensional nine-velocity model [11, 28] is employed for simplicity,
but the basic theory and equations are the same as those for the �fteen-velocity model except
values of the coe�cients, Ei.
Figure 2 shows results for a case with Ra=105 and Pr =0:71 calculated on an 80×80

lattice, where Ra and Pr are Rayleigh and Prandtl numbers, respectively. It is seen that two
clockwise rotational regions appear in the cavity and the temperature �eld is distorted by

x

y

Adiabatic wall

Adiabatic wall

Hot Coldgravity

Figure 1. Geometry of natural convection example problem.
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Figure 2. Calculated results for Ra=105 and Pr =0:71 on an 80×80 lattice:
(a) velocity vectors; (b) isotherms.

the �ow. The accuracy of the result is checked by examining the mean Nusselt number Nu,
which is de�ned as the ratio of the actual heat �ux across the cavity to the heat �ux by pure
conduction without �ows. The present results give Nu=4:50, which agrees within 0.5% with
the grid-independent value of Nu=4:52164 found by Hortmann et al. [29] using the �nite
volume multigrid method. In addition, the velocity vectors and the isotherms are in good
agreement with their results. As for the computing time, the calculation requires 50 min to
obtain the steady-state results on a Pentium 4 processor with 1:4 GHz clock speed. Next, as
an example for comparison, the same problem is calculated by a fourth-order �nite di�erence
method (FDM) based on the SIMPLER algorithm [30]. The calculated mean Nusselt number
is Nu=4:56 and slightly inferior to the result by the LBM. Also, the calculation by the FDM

Copyright ? 2003 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2003; 43:183–198



FLOW AND HEAT/MASS TRANSFER IN 3D POROUS STRUCTURE 189

Inflow

Outflow

x

y

z
C

D

E

L x

G

F

H

I

J

L z

L y

Figure 3. Three-dimensional porous structure.

requires 69 min on the above-mentioned computer, and hence it takes about 1.4 times as much
as the LBM to obtain almost the same accurate results. It should be noted that in the case
of problems with complicated geometries such as porous structures, these di�erences will be
more signi�cant than in such a cavity �ow problem. Thus, the LBM is more accurate and
e�cient than the conventional numerical methods in complex �ow problems.

3. PROBLEM

We consider the problem of �ow and mass transfer in a three-dimensional porous struc-
ture shown in Figure 3. There exist nine identical spherical bodies in a rectangular domain
whose size is Ly=Lz=0:945Lx. The body is made up of a lattice block. The equivalent
diameter dp of the bodies is 0:403Lx, which is determined by the same method as in Refer-
ence [15]. Then the porosity of the structure is 0.654. The centres of the bodies are located at
(x=Lx; y=Ly; z=Lz)= (0:21; 0:29; 0:22), (0:21; 0:74; 0:81), (0:22; 0:71; 0:22), (0:23; 0:32; 0:80),
(0:48; 0:49; 0:49), (0:75; 0:80; 0:29), (0:78; 0:23; 0:70), (0:78; 0:78; 0:70) and (0:80; 0:23; 0:29).
A periodic boundary condition with pressure di�erence is used at the inlet and outlet. A

slip wall condition is applied to the other sides of the domain.

4. BOUNDARY CONDITIONS

Boundary conditions in terms of the distribution function for �-species are described. Boundary
conditions for the �uid are referred to Reference [15].

4.1. On the body

On the body, two types of boundary condition for �-species are considered. One is the case
that the concentration of �-species is given at the surface of the body, and the other is the
case that the normal mass �ux of �-species is zero at the surface. At a boundary node on
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the body, let n be the unit normal vector along the line connecting the node with the centre
of the body. The distribution functions of �-species such that ci · n ¿ 0 are unknown at
the boundary node. When the concentration of �-species is given at the boundary node, the
unknown distribution functions are assumed to be given by

gi=Ei�′� for ci · n¿ 0 (18)

where �′� is an unknown parameter. Note that the counter slip velocity [31] is set to zero so
as to maintain numerical stability at high Reynolds numbers [15]. The unknown parameter is
determined so that the concentration of �-species at the boundary node is equal to a given
value ��|w. Substituting Equation (18) and the known distribution functions gi for ci · n60
into Equation (8), the unknown parameter �′� is speci�ed as follows:

�′�=
��|w −∑

i(ci · n60)gi∑
i(ci · n¿0)Ei

(19)

On the other hand, when the normal mass �ux of �-species is zero at the boundary node, the
unknown distribution functions are also assumed to be Equation (18). From Equations (15)
with (16), the normal mass �ux j�n (= j� · n) on the body at rest is given by

j�n=
15∑
i=1
gici · n (20)

Hence, substituting Equation (18) and the known distribution functions gi for ci · n60 into
Equation (20), the unknown parameter �′� is speci�ed as follows:

�′�= −
∑

i(ci · n60)gici · n∑
i(ci · n¿0)Eici · n

(21)

4.2. On the side of domain

On the sides of the domain except for the inlet and outlet, we assume that the normal mass
�ux of �-species is equal to zero. Thus, the above-mentioned boundary condition on the body
with zero mass �ux is also applied to this case. For example, at the lattice node on the face
CDHG in Figure 3, we express the unknown distribution functions g3; g8; g9; g11 and g14 by
using Equation (18). The unknown parameter �′� is given by Equation (21), i.e.

�′�=6(g6 + g10 + g12 + g13 + g15) (22)

On the corner line, e.g. on the line CG, g3, g4, g8, g9, g10, g11, g14 and g15 are unknown
distribution functions. Since g10, g11, g14 and g15 are the distribution functions whose velocity
points from the outer to outer region, one cannot determine these unknown distribution func-
tions even though the line is regarded as a common part of the two faces. In the following
calculations, all the distribution functions including known distribution functions on the CG
are set to the averaged value of the corresponding distribution functions at the two nearest
neighboring lattice nodes in the y- and z-directions. The same procedure is used on the other
three corner lines and at every vertex from C through J.
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4.3. At the inlet and outlet

At the inlet and outlet, a periodic boundary condition with a concentration di�erence is as-
sumed. Hereafter, the subscript ‘in’ and ‘out’ represent quantities at the inlet and outlet,
respectively. It is noted that under the periodic boundary condition, the concentration distri-
bution of �-species at the inlet is unknown quantity in advance. In the following calculations,
the concentration di�erence ��� between the inlet and outlet is speci�ed.
The unknown distribution functions at the inlet and outlet are determined as follows. At

the inlet, the unknown distribution functions are g2; g8; g10; g11 and g13. Taking account of
the form of the equilibrium distribution functions given by Equation (5), we assume that the
unknown distribution functions at the inlet can be written by adding constant values to the
corresponding known distribution functions at the outlet as follows:

gi|in = gi|out + Ei(K1 + cixK2 + ciyK3 + cizK4) for i=2; 8; 10; 11; 13 (23)

where K1–K4 are constants, and cix, ciy and ciz are the x-, y- and z-components of the
velocity vector ci, respectively. Similarly, at the outlet, the unknown distribution functions
g5; g9; g12; g14 and g15 are assumed to be written by subtracting constant values from the
corresponding known distribution functions at the inlet:

gi|out = gi|in − Ei(K1 + cixK2 + ciyK3 + cizK4) for i=5; 9; 12; 14; 15 (24)

Then the constant values K1–K4 are determined by the following conditions. First, the concen-
tration di�erence of �-species between the inlet and outlet is equal to the given ��� (=��|out−
��|in). By using Equation (8), we obtain

15∑
i=1
(gi|out − gi|in)=��� (25)

Next, considering the mass �ux of �-species at the inlet and outlet and using Equations (15)
with (16), we get

15∑
i=1
ci�(gi|out − gi|in)=���u�|in for �= x; y; z (26)

where u�|in is the �-component of the �ow velocity at the inlet. Therefore, we �nally obtain
four equations for four unknowns. The solutions are obtained as follows:

K1 = 3[g1|out − g1|in + g3|out − g3|in + g4|out − g4|in
+g6|out − g6|in + g7|out − g7|in −���] (27)

K2 =−3���ux|in (28)

K3 = 9[g3|out − g3|in − g6|out + g6|in −���uy|in] (29)

K4 = 9[g4|out − g4|in − g7|out + g7|in −���uz|in] (30)

Substituting Equations (27)–(30) into Equations (23) and (24), all the unknown distribution
functions for �-species at the inlet and outlet are determined for the given ���.
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In addition, the unknown distribution functions on the corner lines of the inlet and outlet
except for the vertices are calculated by the combination of the above-mentioned boundary
conditions at the inlet and outlet and those on the sides of the domain. For example, on
the lines CF and GJ in Figure 3, taking account of the fact that uz=0, we �rst assume
g2|in; g11|in; g13|in; g5|out ; g12|out and g14|out to be written by the following equations with
constant values K5–K7:

gi|in = gi|out + Ei(K5 + cixK6 + ciyK7) for i=2; 11; 13 (31)

gi|out = gi|in − Ei(K5 + cixK6 + ciyK7) for i=5; 12; 14 (32)

Then, the other unknown distribution functions are expressed by using Equation (18) with
parameters �′�|in and �′�|out. The unknown parameters are determined by Equations (25), (26)
for �= x; y and (21) at the inlet and outlet. Hence, we obtain �ve equations for �ve unknowns.
The solutions are given by

K5 = 3[g1|out − g1|in + g3|out − g3|in + g6|out
−g6|in + 2(g7|out − g7|in)−���] (33)

K6 =−18
5
���ux|in (34)

K7 = 18[g3|out − g3|in − g6|out + g6|in −���uy|in] (35)

�′�|in =
1
6
(K5 + K6) + 6[g7|in + g11|out

+g12|in + g13|out + g14|in] (36)

�′�|out =−1
6
(K5 − K6) + 6[g7|out + g11|out

+g12|in + g13|out + g14|in] (37)

The same method is used on the other corner lines of the inlet and outlet.

5. RESULTS AND DISCUSSION

We �rst consider a mass transfer problem under the condition that �-species is di�used from
only the body M whose centre is located at (x=Lx; y=Ly; z=Lz)= (0:48; 0:49; 0:49) and that the
normal mass �ux of �-species is zero on the other bodies. The computational domain is
divided into 73×69×69 cubic lattice in the x-, y- and z-directions. The pressure di�erence
�p between the inlet and outlet and the kinematic viscosity � of the �uid are changed so
that the range of the Reynolds number Re= �u|indp=� is 2:216Re6212 where �u|in is the time-
and space-averaged velocity at the inlet after transitional �ows. Here it should be noted that
in the LBM errors caused by the compressibility e�ect are proportional to the Mach number
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squared. Hence a small value of �u|in is desirable, since the errors are proportional to ( �u|in)2.
In the following calculations, we choose �p so that �u|in becomes less than 0.05 in all cases.
The Schmidt number Sc= �=D� is �xed at 1. The concentration of �-species on the body M
is kept at ��|w =2:5. The concentration di�erence of �-species between the inlet and outlet
is �xed at ���=0:1. The initial conditions for the macroscopic variables are �=1, u= 0,
��=1 and j�= 0 in the whole domain.
As in Reference [15], when preliminary computations with the coarser grids (38×35×35

and 49×46×46 cubic lattices) were performed, numerical instabilities occurred and the com-
putations did not converge at high Reynolds numbers, though almost grid-independent results
were obtained at lower Reynolds numbers. Also, the computation time for the present calcu-
lation with 73×69×69 cubic lattices required about 100 min per 1000 time steps on a single
processor of the COMPAQ Alpha Station with 667 MHz clock speed.
Figures 4–6 show the calculated results of �ow velocity vectors (left) and concentration

pro�les of �-species (right) on the di�erent planes (y=Ly=0:36, y=Ly=0:88 and x=Lx=0:51)
at various Reynolds numbers (Re=2:21; 38:1 and 212) after transitional �ows. In these �gures,
the length of vectors is normalized so that the �u|in has the same length in spite of di�erent
Reynolds numbers, and the bodies in the structure are depicted by the spheres with the
equivalent diameter dp = 29:4�x. Also, it is noted that in Figures 4 and 6 the dark gray body
in the centre represents the body M from which �-species is di�used. Figures 4 and 5 show the
results on the two di�erent planes parallel to main �ow. It is found from Figure 4 that at low
Reynolds number of Re=2:21 the �uid �ow avoids the bodies and goes through open spaces,
and the �-species spreads in every direction mainly by the e�ect of di�usion. At moderate
Reynolds number of Re=38:1, on the other hand, it is seen that the �ow speed becomes a
little larger and �-species is di�used together with �uid �ow. At high Reynolds number of
Re=212 the �ow separations occur and several vortices appear behind the bodies, and the
concentration of �-species is highly a�ected by the �ow convection. In addition, �-species
di�uses mainly through the central region of the domain. Figure 5 shows the calculated results
on the di�erent plane. It should be noted that this plane has no cross-section of the body M.
At Re=2:21 the concentration of �-species increases almost linearly in the x-direction. On
the contrary, at Re=212 the concentration of �-species varies three-dimensionally and is
completely di�erent from those at lower Reynolds numbers. Figure 6 shows the results on
the plane vertical to main �ow. It is seen that at Re=2:21 the concentration of �-species is
almost uniform on the y–z plane, while at Re=212 the steep concentration gradient exists
around the body M and the concentration pro�le becomes more complicated.
We next consider a mass transfer problem in Figure 3 under the condition that �-species is

di�used from all the bodies in the structure. In the following, the concentration of �-species
at the boundary nodes on the bodies is increased linearly from the inlet to outlet. The value
of ��|w at the inlet is kept at 1. The concentration di�erence ��� between the inlet and outlet
is �xed at 0.5. In addition, the Schmidt number is �xed at 0.6. The other conditions are the
same as the previous ones. The Sherwood number Sh between the inlet and outlet can be
calculated by the following equation:

Sh=
���

(��|w − ��m)in Re Sc
LyLz
Stot

(38)

where ��m is the bulk concentration of �-species, and Stot is the total surface area of all the
bodies in the structure. Figure 7 shows the comparison of calculated results with experimental
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Figure 4. Flow velocity vectors (left) and concentration pro�les of �-species (right) on the plane
of y=Ly=0:36 at various Reynolds numbers: (a) Re=2:21; ��=4:25×10−1; ���=1:18×10−2;
(b) Re=38:1; ��=6:55×10−2; ���=7:63×10−2; (c) Re=212; ��=4:56×10−2; ���=1:10×
10−1, where ��=���=(��|w−��m|in), and ��� is a contour interval. The dark gray body in the

centre is M from which �-species is di�used.
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Figure 5. Flow velocity vectors (left) and concentration pro�les of �-species (right) on the plane
of y=Ly=0:88 at various Reynolds numbers: (a) Re=2:21; ��=4:25×10−1; ���=1:18×10−2;
(b) Re=38:1; ��=6:55×10−2; ���=7:63×10−2; (c) Re=212; ��=4:56×10−2; ���=1:10×
10−1, where ��=���=(��|w − ��m|in), and ��� is a contour interval. This plane has no

cross-section of the body M.
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Figure 6. Flow velocity vectors (left) and concentration pro�les of �-species (right) on the plane
of x=Lx=0:51 at various Reynolds numbers: (a) Re=2:21; ��=4:25×10−1; ���=1:18×10−2;
(b) Re=38:1; ��=6:55×10−2; ���=7:63×10−2; (c) Re=212; ��=4:56×10−2; ���=1:10×
10−1, where ��=���=(��|w−��m|in), and ��� is a contour interval. The dark gray body in the

centre is M from which �-species is di�used.
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Figure 7. Comparison of calculated Sherwood numbers with experimental data: •, the present
calculated results; ×, the experimental data by Petrovic and Thodos [32].

data (Sc=0:6) for packed beds by Petrovic and Thodos [32]. In Figure 7, the solid circle and
the cross indicate the calculated results and the experimental data, respectively. It is found
from this �gure that the calculated values agree well with the experimental data at low and
high Reynolds numbers.

6. CONCLUDING REMARKS

The LBM for a binary miscible �uid mixture is applied to the problems of transport phenom-
ena in a three-dimensional porous structure. Flow characteristics and concentration pro�les
of di�using species are obtained at various Reynolds numbers. The Sherwood numbers are
calculated and compared with the experimental data for packed beds. The results indicate that
the calculated Sherwood numbers are in good agreement with experimental data at low and
high Reynolds numbers. Finally, it should be noted that by introducing other particle distribu-
tion functions, one can perform the calculations for the problems of simultaneous heat=mass
transfer and of multicomponent convection–di�usion systems in porous structures. Therefore,
the present method is useful for the investigation of transport phenomena in porous structures.
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